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The geometry of a torus having elliptical meridian sections is discussed in regard to its eclipsing properties when
viewed at arbitrary inclinations. Eclipses involving the hole horizon as well as the outer horizon are considered.
Various special cases of such a torus include those of a thin ring or disk, an ellipsoid of revolution, and a section
of a right circular cylinder. Thus the relations given here may be used in place of a number of special schemes
used previously for these particular cases, as well as for the case of a general torus of finite thickness. A simple
method is given by means of which one can decide if an arbitrary point in space is or is not eclipsed by the
torus. Leading up to this procedure, a general horizon condition is derived and the basic equations of the problem
are listed, as are quadrant rules for the surface coordinates of the torus. Certain basic equations might be used
to derive analytic eclipse functions for special cases, such as eclipses of limb-darkened spheres, although this
has not been done in the present paper. Major simplifications are made possible by the definition of an auxiliary
ellipsoid, points on whose surface are mapped in one-to-one correspondence into surface points of the torus.

" Finally, some discussion of practical computational problems is given, and a FORTRAN subroutine, TORUS,
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is briefly described.

INTRODUCTION

N recent years, explanations for the peculiarities of
a number of unusual binary star systems have been
given in terms of disks or rings of circumstellar matter
around one component -of the binary [e.g., for ¢ Aur,
Huang (1965, 1974a, 1974b); Cameron (1971); Wilson
(1971); for B Lyr, Huang (1963); Wilson (1974);
Kriz (1974); for BM Orionis, Hall (1971); Wilson
(1972)]. The geometrical thicknesses of these disks
are in some cases negligible and in others fairly great.
Sometimes there is a central opening (the disk is a
ring) and sometimes not. In one case the disk model is
a simple ellipsoid of revolution, in another a “red
blood cell,” and in another a section of a right circular
cylinder. To some it may seem unnecessary to attain
much mathematical rigor in the treatment of such
disks, since the models are intended only as approxima-
tions to the true form of the circumstellar matter
distribution. However, it must be remembered that if an
impersonal technique, in the form of the method of
differential corrections, is to be applied to the observa-
tions, as surely seems desirable, then it is necessary
to form derivatives of the apparent system brightness
with respect to the various model parameters (usually
by numerical means). Naturally, if the mathematical
properties of the disk, with regard to eclipses, have been
defined only qualitatively, it will be impossible to
compute such derivatives and therefore impossible to
evaluate the model parameters impersonally.
Observations of another unusual binary, specific
results on which will be published later, seem to require
a disk having both of the two most troublesome features
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found in the above cases. That is, the observations
require a “disk” with a central hole (or at least a
central depression) and a finite thickness. The form is
thus that of a torus or “donut.” Therefore, it seemed
worthwhile to develop a general procedure for comput-
ing the effects of eclipses by a torus, including both the
outer horizon and the inner or hole horizon. In most
cases, the hole horizon can eclipse only the component
located within the torus. Such a procedure will actually
be more valuable than one might first suspect, because
special cases of a general torus with elliptical meridian
cross section cover all of the types of disk models
mentioned earlier. That is, we can make the thickness
negligible and find a thin ring, set the hole radius to
zero and find a thin disk, or we can make the radius to
the center of the elliptical meridian section equal to
zero and find an ellipsoid of revolution. We can even
make the equatorial axis of the elliptic meridian section
equal to zero and find a section of a right circular
cylinder. Thus the procedure which follows can be
used for any of the simple figures of revolution one
might reasonably encounter in binary-star models.

I. THE GEOMETRY

Define a coordinate system with origin O at the
center of the torus, polar angle 6 (colatitude), and
longitude angle ¢, with ¢ =0 corresponding to the line
of centers between binary components. Point O will
coincide with the center of one component of the binary
system. Let this line of centers also be the x axis of a
right-handed, rectangular coordinate system whose y
axis lies in the orbit plane and whose z axis is normal to
the orbit plane. The equatorial plane of the torus will
coincide with- the «,y plane (binary-orbit plane). A
plane for. ¢ =constant will cut the torus in an ellipse
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Fic. 1. Torus geometry at a fixed value of ¢. Meridian sections
of the auxiliary ellipsoid (large quarter-ellipse) and of the torus
(small half-ellipse) are shown. The centers of the auxiliary

ellipsoid and of the entire torus (point O) are coincident with the
center of one component of the binary system.

whose semiaxes are ¢, ¢ and whose center is at O', as
in Fig. 1. (Of course, there will actually be two such
elliptical sections, but for a particular value of ¢ we
consider only the one in the “positive” direction.
The other ellipse will correspond to longitude ¢-t7.)
Further denote the distance OO’ by R and the distance
from O’ to an arbitrary point P’ on the elliptical section
by 7. In the same plane we can imagine a larger elliptical
section (axes 4, C) of the same shape and orientation
and centered on O, points (P) on whose circumference
are in one-to-one correspondence with points (P’) on
the first ellipse. That is, (cf. Fig. 1) points P and P’
are related through the condition

LZ'0'P'=LZOP=4.

Note that the normals to P and P’ in the plane ¢ =con-
stant coincide with the corresponding normals to the
ellipsoid and torus, since both are figures of revolution.
Since the plane normals at P and P’ are parallel, the
same can be said of the three-dimensional surface
normals at these points, and thus they form the same
angle with the line of sight for an infinitely distant
observer. For this observer, a point P’ will be on the
horizon of the torus if and only if the corresponding
point P is on the horizon of our large ellipsoid. Further,
since this condition holds at any value of ¢, we should
be able to develop a general horizon test in terms of 6,
¢, which will be the same for the torus as for our ellipsoid
of revolution having axes 4, C and centered on O.
We shall take as our basic horizon definition the inter-
section in a right angle of a surface normal and the line
of sight. Therefore, because of the hole inthe torus, we
include sections of horizon which would be out of view
in the case of an opaque torus. It is best, therefore, to
think of the horizons we shall find as those of a trans-
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parent torus. When dealing with an opaque torus, one
may then simply discard those sections of horizon

which are out of sight.

The x, y, z coordinates of an arbitrary point P’ can
be written as the sum or the corresponding coordinates
of 0" with respect to O and of P’ with respect to 0.
Thus,

x=r7 sinf cos¢p+R cose,
y=r sinf sing+R sing, ()

2=7 cosb.

The projection of these into the plane of the sky
(coordinates ysky, %ky; Origin projected onto O) is

Yeky = — sin®-+y cosO, @

Zsky = ~—% €08t cos® —y cost sin®@ -z sing,
where ©, 1 are the orbital phase and inclination, respec-
tively. Because the torus is a figure of revolution,
obviously there can be no difference in the aspect which
it presents at various phases. Therefore, we can, without
loss of generality, fix ® at any convenient value. We
choose ®=0, so that the insertion of Egs. 1 and 2 yields

sky =7 sinf sing+R sing,
Vsky ¢+ L'/ (3)

Zoky = — (7 sinf cos¢+R cosp) cosi+r cosf sini.

Equations 3 give the plane of sky coordinates for an
arbitrary point on the torus, relative to the center of
the torus. Now 7 can be expressed in terms of the
semiaxes @, ¢ as

r=ac/[+ (8 —c?) cos?d 3, (4)
so that Egs. 3 become ‘

ac sinf sing

[c*+ (a2 —c?) cos?0 ]

Ysky = +R sing,
. )
ac(cosf sini—sinf cose coss) )

Zsky = — R cos¢ cost.

[c?+ (a2 —c?) cosi ]t

As a reasonable scheme for computing the effects of
eclipses by the torus, we presume to have available the
Yeky, Zsky (Viz., Egs. 2) coordinates of an arbitrary point
on one of the binary component stars, which we will
test against a horizon function (which must be con-
sistent with Egs. 5), to see if that point lies within the
projected boundaries of the torus (outer horizon or hole
horizon). However, Egs. 5 are expressed in terms of the
6, ¢ surface coordinates on the torus, which are not
related in any simple way with arbitrary Yy, %sky
coordinates (i.e., with points which may or may not
project onto the torus). ,
We may, however, proceed as follows:

(1) Form the quotient of Egs. 5, and substitute for
6 in terms of ¢ from a general horizon condition, which
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we shall derive. This will give z.y/Vsky as a function of
¢ for horizon points.

(2) Since we know the ratio 2z.y/ysky from the
location of our arbitrary, possibly eclipsed, point, we
may solve the abovementioned equation for ¢ by any
convenient means such as the Newton-Raphson
method.

(3) Substitution of ¢ back into the horizon condition
will yield 6, and (¢,8) substituted into Eqgs. 5 will yield
the Ysuy, Zsky coordinates of that point on the torus
horizon which lies along the direction toward the
(possibly eclipsed) point. One may then readily compare
the distances from the origin to the test point and to the
horizon point to determine if the test point is eclipsed
or not.

(4) Other variations on this basic idea are possible,
although these will not be followed in detail in this
paper. For example, a representative collection of
horizon points might be obtained in the abovemen-
tioned way, and a smooth approximation polynomial
fitted to these for later use in fast and simple eclipse
calculations. Alternatively, the horizon condition in 8,
¢ might be substituted directly into Egs. 5, yielding a
parametric representation of the horizon [i.e., two
equations for yey (@) and zey (@) 1.

We now find the condition for an arbitrary point on
the torus to be a horizon point. To do this, we must
evaluate the scalar product of two vectors, one of which
is normal to surface at P; while the other is a unit
vector along the line of sight. When the scalar product
is zero, P’ must be on a horizon of the torus. In the
x, ¥, z system, it can be shown that the normal vector
has components

#n,= —sinf cose,

#n,= —sing sing, (6)
a2

n,= — — Cosb,
62

while the line-of-sight vector has components
1,=cos0 sinj,
l,=sin® sinj, N
2= COSt.

Again we choose ®=0, so that the scalar product of
Egs. 6 and 7, equated to zero, gives

a

sins sinf cos¢+- - cosf cosi=0, (8)
c

which may be rearranged to give

a2
tané cosp=—
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Equation 9 is the condition that an arbitrary point on
the surface of the torus be a horizon point.

We now form the quotient of the two Egs. 5, sub-
stituting at the same time for 8 in terms of ¢ from the
horizon condition Eq. 9. We find

Zeky a’ cos1
= [c(sini-{— — )
Vsky ¢t tant
at ¥
—R cos¢ COSi(——————— +1) J/
¢? cos?p tan?;

a* tang a? 3
[— +R sing (—-——— +1) :l (10)
c? cos’p tan?j

¢ tans

If we compare the square-root factor in Eq. 10 with
Egs. 4 and 9, we can easily show that it consists of a
factor ¢/r, which is positive by definition, and an
implicit factor of 1/cosf. Therefore, the sign of the
root is positive or negative according to whether cosf
is positive or negative. One can establish the quadrant
rules given in Table I by visualizing an inclined torus
and noting in which 6 quadrant and which ¢ quadrant
the horizon will lie. Quadrant rules are necessary not
only to establish the sign of cosf, and thus of the root
in Eq. 10, but also in supplying starting values for the
Newton—Raphson solutions for ¢. For the outer horizon
(subscript out) the ¢, § quadrant rules are the same for
all inclinations, but for the inner (hole) horizon we
have a change of rules corresponding to the critical
inclination at which one can just begin to see through
the hole.

In order to carry out the Newton-Raphson solution
of Eq. 10 for ¢, we should have available the derivative
d(2sky/Vsky)/dp. We list this derivative, which is rather
complicated, in a series of subparts which are well
suited to computer coding. First, we write Eq. 10 in
the compressed form

T1+T2

e )
T3+T4

zsky

Vsky

where the meanings of T1, etc., are obvious by compar-
ison of Egs. 10 and 11. The derivative of Eq. 11 is,

TaBLE I. Quadrant rules for ¢, 6.

bin Oin
¢ ° znot not
near near near near
ZSky/ Ysky Pout 90° 90° fout 90° 90°
I II I 11 I v I
II 111 v IIT I v I
111 v III v II I v
v I I I II 111 v
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of course,

foky T2 4T3  dT4
d (T3+Td)—— (T1+T2)<— + ——)
oy dé ¢ d¢ (‘12)
i (T3+T4)? ’

The derivatives of T2, T3, and T4 are given by

ar?2 a’ ¥
—-— =R cost sinq&[(——-——— +1>

d¢ c? cos% tan%

LG A +1>_%], (13)

¢? tan% cos2¢\c2 cos’¢ tan*

dT3 a?

———— (14)
d¢ ¢ tant cos%p

and

a? tan’p / a?

dT4 -4
— - [ +1)
de c? cos’p tanzi\c2 cos?p tan’

1

a? 3
—I—cosqb(———————— -H) ] (15)
¢ cos?p tan?

II. PRACTICAL COMPUTATIONS

A FORTRAN subroutine (named TORUS) has been
developed which utilizes the foregoing equations to
compute a point on the outer horizon or hole horizon
of a torus for an arbitrary position angle in the plane of
the sky. One enters the Yy, %y coordinates of a point
in the plane of the sky (obtained by application of
Egs. 2) and an integer which tells whether the outer
horizon or hole horizon is to be found. Usually this
point would be on the surface of one of the binary-
component stars, although it need not be. Of course
the parameters which describe the torus (R, ¢, ¢, %)
must also be entered. For output we have the yay,
Zeky coordinates of that horizon point which has the
same position angle as the arbitrary point. The external
(calling) program can then use this information to
apply an eclipse test in any one of several obvious ways.
Copies of this subroutine will be provided to interested
potential users.
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The Newton—Raphson iterations in TORUS always
converge fairly quickly, with one minor qualification.
If the inclination is very close to 90° (say i>89°5)
the iterations for some sections of the horizon (the curved
“ends”) may not converge because the derivative
defined by Eq. 12 approaches zero as ¢ approaches 90°,
and this derivative appears as a divisor in the iterative
scheme. However, one can treat these “ends” as a
special case, since for i=~90° their shape differs very
little from that of a simple ellipse. The elliptical
approximation gives

AR+ [ AR?— (¢*+a*K?) (R2—a?) ]*

Ysky = Ot K (16)

and

(17)

where K is the ratio of the arbitrary (input) coordinates
[i.e., K= (zsky/ysky) inj-

In Eq. 16, the positive sign applies for the outer
horizon, the negative sign for the hole horizon. No other
qualifications on the performance of the general
procedure seem needed, except that computations for
the hole horizon sometimes require fairly good initial
estimates for ¢, and that a scheme must be included to
enable the proper ¢ quadrant to be reentered in the
event that an early iteration pushes the operating
point into a neighboring quadrant.

Zsey = K Yexy,
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